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The artificial microswimmer �R. Dreyfus et al., Nature �London� 437, 862 �2005�� whose mechanism of
propulsion is the magnetically driven undulation of a flagellum-like tail composed of chemically linked para-
magnetic beads can be used as a physical model with which to study low-Reynolds-number swimming.
Understanding how such swimmers interact provides insight into the related problem of quantifying the
hydrodynamic interactions between microorganisms. In this study, particle-based numerical simulations are
conducted of two comoving artificial swimmers. The resulting swimming speeds are determined over a range
of separations for swimmers driven by planar and rotational magnetic fields. The far-field hydrodynamic
interactions are analyzed and found to decay as h−2 where h is the separation distance. Additionally, the role of
the interswimmer magnetic forces is determined.
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I. INTRODUCTION

From self-organized vortices of two-dimensionally con-
fined sea urchin sperm �1� to millimeter-long trains of wood
mouse sperm �2� to turbulence-like structures formed by
swarming bacteria �3�, the interactions between swimming
microorganisms have been observed to lead to a rich variety
of collective behaviors. Recent coarse-grained hydrodynam-
ics studies �4� and simulations of rigidly connected point
sources �5� and self-locomoting rods �6� lend insight into the
instabilities observed in �3�. Additionally, these studies along
with �7� established the differences between suspensions of
“pusher”-type swimmers where the thrust is generated be-
hind the passive element of the swimmer and “puller”-type
swimmers where the thrust is in front of the passive compo-
nent. As two swimmers approach each other, details concern-
ing the swimmers’ kinematics and the near-field hydrody-
namic interactions become important �8� and need to be
accounted for. Quantifying experimentally the relationship
between these dynamics and suspension properties is, in gen-
eral, quite difficult. The artificial microswimmer �9� offers a
controllable model system that may be used in place of mi-
croorganisms to provide insight into this relationship. In this
case, the differences need to be quantified between this ex-
ternally driven system and the self-driven swimmer which it
mimics.

The artificial swimmer is constructed from a paramag-
netic filament tail attached to a human red blood cell. The
filament is composed of micron-sized paramagnetic beads
linked to each other by flexible DNA molecules. An applied
magnetic field is used to drive the motion of the swimmer.
By adjusting the frequency and magnitude of the applied
field, the kinematics of the swimmer can be altered. Also, by
applying different forms of the magnetic field, the device can
be made to swim using flagellum beating �9,10� or rotating
corkscrew �11� strategies.

As the complexities surrounding the structural details of
natural flagella and the uncertainties in specifics of microtu-
bule sliding are not present, accurate theoretical descriptions
of the artificial swimmer are available. The dynamics of
magnetic filaments and the artificial swimmer have been ex-

amined using models where the filament is treated as a con-
tinuous elastica subject to magnetic torques and hydrody-
namic drag �11–13�. Particle-based methods which consider
the motion of individual paramagnetic beads �10,11� provide
an alternative description.

Previously �11�, we presented and employed a particle-
based method where each bead is represented as a rigid para-
magnetic sphere and the DNA links are treated as flexible,
inextensible rods. We demonstrated the possibility of spiral
swimming and identified an optimal range of the parameters
governing the swimming speed. We follow this study by now
using the particle-based representation to examine the inter-
actions between two microswimmers in comoving configu-
rations. Studying the interactions of artificial microswimmers
theoretically provides an example of swimmer-swimmer in-
teractions where the details concerning the driving forces and
constitutive laws are well described and differs from studies
where the kinematics, rather than the driving forces, of the
swimmers are prescribed �14–16�. Additionally, the results
presented here allow for the evaluation of the accuracy of
theoretical models where the details concerning swimmer
propulsion are ignored �4–7�. Interactions of swimmers ex-
ecuting both flagellum beating and rotating corkscrew strat-
egies are considered. The details concerning the nature of the
interactions, including the role of the interswimmer magnetic
and far-field hydrodynamic forces, are provided. From these
results and comparisons with the recent boundary element
simulations of a pair of interacting bacteria �8�, we may
quantify the effectiveness of an externally driven system as a
model for an internally driven swimming microorganism.

II. METHODS

A particle-based representation of the artificial swimmer
is adopted and described here for a single swimmer. The
magnetic filament tail is treated as a series of N rigid spheres.
Each sphere n=1, . . . ,N centered at Yn has body axes
�tn ,pn ,qn� and represents a paramagnetic bead of radius a
and magnetic susceptibility �. The beads are linked by inex-
tensible, flexible rods of length l, bending modulus �, and
twist modulus C. A large, nonmagnetic sphere of radius R
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centered at YN+1 and having body axes �tN+1 ,pN+1 ,qN+1� is
tethered to one end of the filament and represents the red
blood cell in the experiments.

The Reynolds number associated with the motion of the
beads is quite small, Re=10−5, and accordingly, at each in-
stant of time the forces and torques on a bead must sum to
zero:

Fhydro
n + Fmag

n + Felas
n = 0, �1�

�hydro
n + �elas

n = 0. �2�

A summary of the procedures used to compute these forces
and torques is presented here while a complete description
may be found in �11�.

A. Magnetic interactions

In the experiments, the magnetic susceptibility of the
beads is ��1, and for such a value, the mutually interacting
dipole model yields a sufficiently accurate estimate of the
interbead magnetic forces. The applied magnetic field and
the fields produced by the other beads induce the dipole mo-
ment of bead n:

mn =
4

3
��an

3Htot�Yn� , �3�

where

Htot�Yn� = H�t� + �
q�n

1

4�
�3�Yn − Yq��Yn − Yq� · mq

rnq
5 −

mq

rnq
3 � ,

�4�

with rnq=	�Yn−Yq� · �Yn−Yq�. Once the dipole moments are
computed, the force on bead n is determined from

Fmag
n = �0�Yn

�mn · Htot�Yn�� , �5�

where �0 is the permeability of free space.

B. Elastic coupling

The DNA linkages between the beads are treated as flex-
ible, inextensible rods parametrized by arclength 0�s� l.
The shape of each link is governed by a set of linearized
beam equations

C
d2�

ds2 = 0, �6�

�
d2�

ds2 = 	1� + 	3, �7�

�
d2


ds2 = 	1
 − 	2, �8�

where �� ,
 ,�� are the Euler angles that vary along the
length of the link and relate the body axes of one sphere to
that of its neighbor. The values of �	1 ,	2 ,	3� are chosen to

enforce the constraint of inextensibility, which for the link
connecting bead n−1 to bead n is

�Yn − Yn−1� − antn − an−1tn−1 = 

0

l

t ds . �9�

The forces and torques on beads n−1 and n as a result of the
deformation of the link are then

Felas
n−1 = 	1tn−1 + 	2pn−1 + 	3qn−1,

Felas
n = − Felas

n−1 ,

�elas
n−1 = M�0� + an−1�tn−1 � Felas

n−1� ,

�elas
n = − M�l� − an�tn � Felas

n � , �10�

where

M�s� = �t �
dt

ds
+ Ct

d�

ds
. �11�

C. Hydrodynamic interactions

The hydrodynamic interactions are provided by the force-
coupling method �FCM� �17,18�. The particle phase is repre-
sented by a body-force distribution in the Stokes equations

�p − ��2u = �
n=1

N+1

Fext
n 
n�x − Yn� + �

n=1

N+1

Gn · ��n�x − Yn� ,

�12�

� · u = 0, �13�

where


n�x� = �2��n,

2 �−3/2e−r2/2�n,


2
, �14�

�n�x� = �2��n,�
2 �−3/2e−r2/2�n,�

2
, �15�

with �n,
=an /	�, �n,�=an / �6	��1/3, and Fext
n =Fmag

n +Felas
n .

The antisymmetric part of the tensor Gn is related to the
torque on the bead 1

2 �Gij
n −Gji

n �= 1
2�ijk�elas,k

n , and the symmet-
ric part is chosen such that


 1

2
��u + ��u�T��n�x − Yn�d3x = 0. �16�

After computing the resulting flow field, the motion of the
particle phase is determined from

Vn =
 u�x�
n�x − Yn�d3x , �17�

�n =
1

2

 ��x��n�x − Yn�d3x , �18�

where � is the vorticity of the fluid.
The FCM has been used successfully in a variety of nu-

merical studies ranging from understanding platelet aggrega-
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tion in capillaries �19� to optimizing the performance of col-
loidal micropumps �20�. The FCM force distribution yields
solutions asymptotic to the Stokeslet, rotlet, and stresslet
along with the corresponding degenerate multipoles associ-
ated with these terms. Additionally, the volume-averaged in-
tegration captures the Faxén corrections for particle motion
in a spatially varying flow field. In numerical tests, the FCM
provided an accurate prediction of the particle mobility for
the related problem of a chain of seven particles falling under
gravity �21�. Although the FCM does not resolve the lubri-
cation forces between the particles, they may be ignored here
as their relative motion is governed exclusively by the elastic
coupling.

Once the velocities and angular velocities are determined,
the equations of motion for the particle phase,

dYn

dt
= Vn, �19�

dtn

dt
= �n � tn, �20�

dpn

dt
= �n � pn, �21�

dqn

dt
= �n � qn, �22�

for each bead n are integrated numerically using an explicit,
stiffly stable second-order scheme �22�. The values of
�	1 ,	2 ,	3� for each link are adjusted by a penalty scheme to
keep the deviation in length below 1.0�10−3l.

III. RESULTS

A. Single swimmer

To compare with previous studies, we first perform simu-
lations of an isolated swimmer driven by the magnetic field

H = − H0�1,h0 cos �t,0� . �23�

In the simulations, the unit of length is taken to be the radius
of a paramagnetic bead, a. The length of the linkages is l
=0.2a and corresponds to the length of the DNA molecules
binding adjacent beads in the experiments �9�. The filament
length is defined as L=N�2a+ l�− l= �2.2N−0.2�a. The mag-
nitude of the magnetic field H0 and the frequency of the
magnetic field, �, are chosen to yield the desired values of
the magnetoelastic number

Mn =
��0��aH0L�2

6Kb�1 − �/6��1 + �/12�
�24�

and the sperm number

Sp = �4���L4

Kb
�1/4

. �25�

The sperm number gives the ratio of the viscous to elastic
forces and provides the ratio of the length of the filament to

the elastohydrodynamic length lEH= �Kb /4����1/4 �23�. The
elastohydrodynamic penetration length is the characteristic
length over which significant bending of the filament will
occur. Based on experimental values, real sperm appear to
operate at Sp�7.0 �24�. The magnetoelastic number de-
scribes the ratio of the magnetic forces to elastic forces and
provides a relative measure of the driving forces. In the con-
text of microorganisms, such a number would describe the
strength of the bending moments produced by microtubule
sliding. In the definitions of Sp and Mn, the effective bending
modulus of the filament, Kb, is related to the bending modu-
lus of a single link through Kb= �2a+ l�� / l. These parameters
together with the values of h0, �, R /L, and C /� determine
the mechanical properties of the swimmer. In all cases con-
sidered, �=1.0 and C /�=1.0.

In the experimental study �9�, the scaled swimming speed
U=V / �L�� of the swimmer was measured over a range of Sp
with the values of Mn and h0 fixed. Figure 1 shows the scaled
swimming speed as a function of Sp with Mn=16, h0=1.16,
and R /L=0.129 as given by the simulation method presented
above. At low Sp, the effects of the viscous stresses are mini-
mal and the resulting motion of the swimmer is nearly a rigid
rotation. Consequently, the translation of the swimmer is lim-
ited. As Sp increases, the deformation of the filament be-
comes significant and the swimming speed increases. If,
however, Sp is too great, the viscous stresses become over-
whelming and diminish the amplitude of the deformation and
the swimming speed.

The swimming speeds measured by �9� and computed by
�10� are also shown in Fig. 1. The swimming speeds given
by simulations and those observed in the experiments are
comparable, especially at high Sp. The discrepancies between
the simulation and experimental results at lower Sp are attrib-

1 2 3 4 5 6 7 8
0

5

10

15

Sp

U

FIG. 1. Scaled swimming speed U of a single swimmer as a
function of sperm number Sp. The motion is generated by the mag-
netic field �23� with Mn=16, h0=1.16, and R /L=0.129. The solid
line with the square markers shows the scaled swimming speeds
obtained using the simulation methods described in Sec. II using
only FCM monopoles to resolve the hydrodynamics. The solid line
with the crosses was obtained using the full hydrodynamic model.
The triangle markers are the experimental results from �9� while the
dashed line was obtained by �10�.
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uted to the presence of a nearby surface in the experiments
and the deformability and oblate shape of the red blood cell.
Such conditions change the drag on the filament and the drag
and viscous torque on the tethered body. The hydrodynamic
forces and torques have been shown to greatly affect the
initial growth of the swimming speed in the context of spiral
actuation �11�. The two simulation methods do produce con-
sistent results, although the results found here did not require
rescaling as they did in �10�.

In addition to the magnetic field �23�, the interactions be-
tween swimmers driven by the magnetic field

H = − H0�1,h0 cos �t,h0 sin �t� �26�

are examined. An extensive study of the artificial swimmer
driven by the spiral field is presented in �11�.

B. Swimmer-swimmer interactions

The interactions between two comoving artificial mi-
croswimmers are examined. We consider four cases where
the swimmers are driven by both fields �23� and �26� and in
two different configurations. For each configuration, the
swimming speed is computed over a range of separations. In
the cases considered, Mn=10, Sp=3.0, and h0=1.0 are fixed
and swimming is in the negative x direction. N=15 beads
comprise the each swimmer’s filament tail, giving a length
L=32.8a. The radius of the tethered sphere is R=6.0a, and
therefore R /L=0.183.

1. Side-by-side configuration

In the first case the separation vector is r= �0,0 ,h� and the
motion is driven by the planar applied field �23�. Here the
axis of separation and direction of applied magnetic torque
are aligned. Both swimmers have the same scaled swimming
speed which is at most 3% less than the single swimmer
scaled speed U�=0.006 355. In addition to the motion in the
swimming direction, the swimmers move apart from each
other along the axis of separation �Figs. 2�a� and 2�b��. The
scaled repulsion speed Uz attains a maximum value of Uz
�0.21U� near contact and decays with separation. The mo-
tions of the swimmers’ tails are synchronized by the applied
field and are nearly identical to the beat patterns of the tails
of two consecutive planar swimmers considered later on in
more detail �Fig. 6�.

To analyze the far-field interactions attained when the
separation distance is much greater than the length of the
swimmer, h�2R+L+ l, we consider the flow field generated
by a low-order expansion of the body-force distribution as-
sociated with an isolated swimmer about the position of the
tethered sphere, YN+1 �see the Appendix�. As all the inter-
bead forces are equal and opposite, the total force
�n=1

N+1�Fmag
n +Felas

n �=0, but the symmetric, Gij
S �t�, and antisym-

metric, Gij
A�t�, parts of the force dipole Gij

T�t� take nonzero
values. Taking x−YN+1= �0,0 ,h�, the resulting time-
averaged out-of-plane flow according to �A4� is

vz�h� = −
3�G33

S �
8��h2 , �27�

where �G33
S � is the nonzero time-averaged value of G33

S . The
dashed lines in Figs. 2�a� and 2�b� are provided by �27�. At
separations h�1.5�2R+L+ l�, the repulsion speed produced
by the simulations does indeed correspond to the far-field
disturbance flow produced by the force dipole associated
with a single swimmer. This repulsion is a result of the in-
compressibility of the fluid. Over the course of one period,
the motion of the swimmer in the xy plane entrains fluid
along the x and y axes which is then forced out along the z
axis. The reduction in swimming speed cannot be explained
by this analysis as vx=0 since G13

A =0 and x1−YN+1,1=0.
Along with planar swimmers, the interactions of two

swimmers driven by the rotating field �26� are considered.
The motion of the swimmers over the course of one period is
shown in Fig. 3. As before, the separation vector is r
= �0,0 ,h�, but this vector is now perpendicular to the direc-
tion of applied torque. Figure 4�a� shows the resulting scaled
swimming speed for the spiral swimmers in this configura-
tion. The values are normalized by the isolated value of U�

=0.010 33. Again, the two swimmers exhibit the same speed,
which is, at any separation, less that the value of an isolated
swimmer. As the swimmers come into contact, there is an
appreciable decrease in the swimming speed with a near-
contact value of 0.8U�. The swimmers additionally move
apart with scaled repulsion speed U
 and precess around each
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FIG. 2. �a� The repulsion velocity as a function of separation
distance for stacked swimmers driven by the applied field �23�. �b�
Log-log plot of repulsion velocity over a range of separation dis-
tances. The dashed lines are provided by �27� which decay as h−2.
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other with precession speed U� �Fig. 4�b��. These data are
shown again in Fig. 5 in a log-log scale.

We compare the present results to those of Ishikawa et al.
�8� where the trajectories are determined using boundary el-
ement simulations for two model bacteria in the same con-
figuration considered here. Initially, as the bacteria swim
they precess about each other and the interswimmer separa-
tion distance decreases. Over time, however, the bacteria
change their swimming directions and swim away from each
other. Here, we find that the spiraling artificial microswim-
mers exhibit precession, but move apart as they swim. This
difference in dynamics arises from the model bacteria being

“pushers” and the artificial swimmers being “pullers.” The
component of the stresslet related to the repulsion in the
artificial swimmer case is the opposite sign of that in the
bacterial case. Also, unlike the bacteria, the artificial swim-
mers will not change their swimming direction since such a
reorientation is not be permitted by the applied field.

As before, we may compute the effective force dipole Gij
T

for the spiral swimmer and analyze the far-field interactions.
With these values of the components of the effective force
dipole and �A4� with x−YN+1= �0,0 ,h�, the far-field flow
can be determined. The disturbance flow related to the repul-
sion velocity is

v
�h� = −
3�G33

S �
8��h2 , �28�

while the precession velocity is given by

v��h� = −
2G23

A

8��h2 . �29�

The values provided by these equations are shown as dashed
and dotted lines in Figs. 4�b� and match the simulation val-
ues at large separations. As with the planar swimmer, the
far-field repulsion is produced the zz component of the
stresslet. The precession is related to the flow generated by
the constant external magnetic torque on each swimmer.

2. Consecutive configuration

The resulting swimming speeds for a configuration where
the separation vector is r= �d ,0 ,0� are presented. In this con-
figuration, the swimmers are placed one behind the other.
The motion over one period for planar swimmers in this
configuration is shown in Fig. 6. For both the planar �Fig.
7�a�� and spiral swimmers, the speed of rear swimmer is
greater than the isolated value, while the speed of the front
swimmer is less. This effect is limited in the case of spiral
actuation where the enhancement in speed of the rear swim-
mer and the reduction in speed of the front swimmer are at
most 5% of the isolated value. For both types of swimmers,
the average value of the two speeds for nearly all separations
is the value in the isolated case. Figures 7�b� shows the dif-
ference in the swimming speeds as a function of separation

FIG. 3. An end-on view of the motion of two side-by-side spi-
raling swimmers over one period of the applied field. The motion of
the tails is coupled by the applied field that is rotating
counterclockwise.
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FIG. 4. �a� Swimming speed as a function of separation distance
for side-by-side swimmers driven by the applied field �26�. �b� Pre-
cession velocity U� and repulsion velocity U
 versus separation
distance. The dashed and dotted lines are provided by Eqs. �28� and
�29�, respectively. The insets in the two figures show the motion of
the two swimmers over one period of the applied field.
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FIG. 5. Log-log plot of the precession and repulsion velocities
over a range of separation distances. The dashed is given by �28�
and the dotted line by �28�. Both decay like h−2.
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distance for planar swimmers. From �A4� and the compo-
nents of Gij

T , the far-field disturbance flow corresponding this
interaction is

v�d� = −
3�G11

S �
8��h2 . �30�

The differences in speeds are provided by twice the absolute
value of �30� and are shown as the dashed lines in Figs. 7�b�.
The far-field values are attained at separations of approxi-
mately two and a half swimmer lengths. Also, the symmetry

of the interaction is evident as the far-field interaction illus-
trates U1�d�=U�− �v�d�� / �L�� and U2�d�=U�+ �v�d�� / �L��.

C. Interswimmer magnetic interactions

Along with the hydrodynamic interactions already dis-
cussed, interswimmer magnetic forces are present and affect
the resulting dynamics. The magnetic interactions are akin to
those that arise between self-assembled chains in suspen-
sions of paramagnetic beads �25�. To quantify their effect, we
conduct simulations where the interswimmer magnetic inter-
actions are ignored. As the resulting motions are modified by
hydrodynamic interactions alone, when compared to the mo-
tions from the full simulations the importance of the mag-
netic interactions can be ascertained. This comparison is
done for planar swimmers in the stacked and consecutive
configurations.

Figures 8�a� shows the repulsion velocity for the stacked
configuration. The near-contact repulsion velocity, however,
is clearly dependent upon the lateral magnetic interactions.
As the separation increases, the magnetic interactions decay
rapidly and the far-field hydrodynamics dominate the dy-
namics. The slight decrease in swimming speed found for
planar swimmers in this configuration was not affected by
the removal of the magnetic interactions. For swimmers in
the consecutive configuration, the magnetic attraction be-
tween the filaments does enhance the speed of the rear swim-

FIG. 6. A top view of the motion of two consecutive planar
swimmers over one period of the applied field.
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FIG. 7. �a� Swimming speeds for two swimmers arranged con-
secutively and driven by applied field �23�. �b� Log-log plot of the
difference in swimming speeds with the dashed line being from 30
with the value of �G11

S � for the planar swimmer.
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FIG. 8. �a� The repulsion velocity as a function of separation.
�b� The two swimming speeds for consecutive planar swimmers.
The solid line with the circular markers is from simulations where
the magnetic interactions are included while the dashed line with
the triangular markers corresponds to the simulations where the
magnetic interactions are ignored.
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mer while hindering that of the front swimmer. This en-
hancement, however, is modest, and the hydrodynamics
appear to dominate, even at small separations.

IV. SUMMARY AND CONCLUSIONS

In this study, a particle-based method was used to conduct
simulations of the artificial microswimmer. This particle-
based method treated the magnetic swimmer as a series of
rigid spheres connected by inextensible flexible rods. The
magnetic forces were treated using a point-dipole approach,
and the interbead hydrodynamic interactions were provided
by the FCM. First, simulations of a single swimmer were
conducted. The resulting swimming speeds were consistent
with previous simulations and compared favorably with the
experiments at high Sp. The effects of a nearby surface need
to be included in order to match the low-Sp experimental
results. Simulations of two comoving artificial swimmers are
performed. Cases are considered where the swimmers are
driven by both planar and rotary fields in two different con-
figurations. For the values of Mn, Sp, and h0 used in these
simulations, the resulting scaled swimming speed for a single
swimmer was U=0.006 355 for planar actuation and U
=0.010 33 for spiral actuation. These values fall within the
range of scaled swimming speeds of microorganisms which,
for example, are U=0.0033 for E. Coli bacteria �26�, U

=0.012 for bull sperm, and U=0.0253 for sea urchin sperm
�27�. For the side-by-side, or stacked, configurations, the
swimming speed is the same for each swimmer and less than
the value for an isolated swimmer. The reduction in speed is
greater for the spiral-type swimmers. In addition to motion in
the swimming direction, the swimmers move apart from each
other and the spiral swimmers also precess around each
other. At large separations, the interactions decay like h−2

according to the far-field disturbance flow produced by a
swimmer. Consecutive swimmers move only in the swim-
ming direction, but the rear swimmer moves faster, while the
front swimmer is slower. Again the interaction at large sepa-
rations is provided by the force dipole associated with the
swimmers. To understand the role of the magnetic interac-
tions, simulations were conducted where the interswimmer
magnetic forces were not included. By comparing these re-
sults to those from the full simulations, it is found that only
the near-field repulsion for stacked swimmers is significantly
effected by the magnetic forces.

Although the dynamics and interactions of this novel de-
vice are of interest in their own right, the results indicate that
the interactions between the externally driven artificial mi-
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FIG. 9. Components of the force dipole of the planar swimmer:
�a� The nonzero components of the traceless stresslet Gij

S over the
course of one period on the applied field. �b� The nonzero compo-
nent of the antisymmetric part of the force dipole, G12
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0 0.2 0.4 0.6 0.8 1.0
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

tω/2π

G
S ij

/
(4

π
χ
a

3
H

2 0
/
3)

0 0.2 0.4 0.6 0.8 1.0
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

tω/2π
G

A ij
/
(4

π
χ
a

3
H

2 0
/
3)

GA
23

GA
13

GA
12

(a)

(b)

FIG. 10. Components of the force dipole of the spiral swimmer:
�a� The nonzero components of the traceless stresslet Gij
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croswimmer resemble the interactions between swimming
microorganisms. For example, since the magnetic field exerts
no net force on a swimmer the far-field hydrodynamic inter-
actions decay as h−2 which is what one expects between two
force-free and torque-free self-driven swimmers. Based on
the results presented here, it is therefore reasonable to as-
sume that at greater than separations of around two swimmer
lengths, the far-field hydrodynamics will also provide a good
approximation of the hydrodynamic interactions between mi-
croorganisms. Additionally, these results encourage the un-
derstanding of how the artificial swimmer behaves near a
rigid surface and relates to the motion of microorganisms
near surfaces �28�. By comparing with simulations of model
bacteria �8�, we see that suspensions of artificial microswim-
mers will not exhibit reorientation or dramatic changes in
wave motion as a result of the hydrodynamic interactions.
These limitations restrict the possibility of studying more
generally phenomena such as the bacterial turbulence �3� or
the formation of sperm vortices �1� with artificial swimmers.
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APPENDIX

To analyze the far-field interactions attained when the
separation distance is much greater than the length of the
swimmer, h�2R+L+ l, we consider the flow field generated
by a low-order expansion of the body-force distribution as-
sociated with an isolated swimmer about the position of the
tethered sphere, YN+1:

�
n=1

N+1

Fi
n��x − Yn� + �

n=1

N+1

Gij
n ���x − Yn�

�xj

� ��
n=1

N+1

Fi
n���x − YN+1�

+ ��
n=1

N+1

Gij
n + Fi

n�YN+1 − Yn� j� ���x − YN+1�
�xj

.

�A1�

Since both the interbead magnetic and elastic forces are
equal and opposite, the total force acting on the swimmer at
any instant in time is zero, �n=1

N+1Fn=0. The moments of the
forces and the force dipoles, however, are nonzero and pro-
vide the leading-order contribution to the flow. Defining
Gij

T =�n=1
N+1Gij

n +Fi
n�YN+1−Yn� j and decomposing this tensor

into its traceless, symmetric part �the stresslet�

Gij
S =

1

2
�Gij

T + Gji
T� −

1

3
Gkk

T �ij �A2�

and its antisymmetric part

Gij
A =

1

2
�Gij

T − Gji
T� , �A3�

the leading-order flow field is, in index notation, given by

vi�x − YN+1� =
1

8��
�− 2

�x − YN+1� j

r3 Gij
A

−
3�x − YN+1�i�x − YN+1� j�x − YN+1�k

r5 Gjk
S � ,

�A4�

where r=	�x−YN+1� · �x−YN+1�. For the planar swimmer, the
four nonzero components of the symmetric part over one
period are shown in Fig. 9�a� and the nonzero component of
the antisymmetic part is presented in Fig. 9�a�. Figure 10�a�
shows the components of Gij

S , and Fig. 10�b� shows the com-
ponents of Gij

A for the spiral case. Here, the constant value
G23

A indicates the time-independent torque on the swimmer
produced by the applied field.
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